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We present a coupled-map lattice model of a sandpile which relaxes via the dual mechanisms of surface flow
and bulk reorganization. We focus on the situation where reorganization dominates flow and examine the
response of our model to rotation; the event size distribution is analyzed as a function of the model parameters.
In regions of phase space where the effects of excess volume and grain inertia are both large, we see a
characteristic double peak in the size distribution, indicating a preferred scale for large avalanches. We explain
this, and the associated configurational memory, using a simple picture of grain-cluster coupling. We next
compare the distribution functions with those produced by random deposition and, in the latter case, present
results for the event size distribution function in terms of the size of the deposited grains. Finally, we show the
connection of our model to earlier scale-invariant models, and discuss our results.@S1063-651X~96!09306-3#

PACS number~s!: 05.40.1j, 05.60.1w, 81.90.1c, 82.70.2y

INTRODUCTION

Although sandpile models were first introduced by Bak
et al. @1# as examples of extended dissipative systems they
have generated considerable interest in their own right in the
context of granular media@2,3# leading to many experimen-
tal, numerical, and theoretical investigations@4#. Most nu-
merical investigations have concentrated on simple lattice-
based models, such as cellular automata, to explore the
different factors influencing granular flow; in particular, dis-
crete sandpile models have been used recently to investigate
the impact of granular disorder@5#, grain inertia @6#, and
sliding friction @7# on the statistical distribution of avalanche
sizes in driven sandpiles. In this paper we model a sandpile
on a rotating base, which is a case of great experimental
importance@3#, and examine the effect of granular reorgani-
zation and inertia on its avalanche spectrum.

The avalanche size distribution has been of great signifi-
cance in the development of sandpile modeling because ex-
perimental results@8,9# are at variance with the original
model of Baket al. @1#; while the latter predicts a simple
power law for the avalanche size distribution function, indi-
cating scale-invariant dynamics, the former show that in
practice, larger avalanches occur more frequently than pre-
dicted by the power law describing the distribution of the
smaller events. These experimental results demonstrate that
one particular range of avalanche sizes is preferred, and have
led to a large body of theoretical and numerical work which
aims to identify the underlying physical mechanisms for
such behavior.

In our search for a suitable explanation we constructed a
cellular automaton model of a reorganizing sandpile@5#
based on a model@10# that identifies two distinct dynamical
mechanisms for granular relaxation: a faster mechanism cor-
responding to the motion of grains moving independently of
their clusters, and a slower mechanism corresponding to the

collective reorganization of grains within their clusters. The
avalanche spectrum obtained in that work was in agreement
with experiment@8,9#, and attributed the breakdown of scale
invariance to the competition between these two mecha-
nisms.

In this paper we model an experimental situation which
forms the basis of many traditional@11# as well as modern
@8# experiments; a sandpile in a rotating cylinder. We con-
sider the dynamics of sand in a ‘‘half cylinder’’ that is rotat-
ing slowly around its axis and we suppose that the sand is
uniformly distributed in the direction of the axis. Our model
is therefore essentially one-dimensional. The driving force
arising from rotation continually effects the stability of the
sand at all positions in the pile and is therefore distinct from
random deposition. We include both surface flow and inter-
nal restructuring@4,5# as mechanisms of sandpile relaxation
and focus on a situation where reorganization within the pile
dominates the flow. This situation, of a sandpile subjected to
slow rotation or tilt, has been formulated elsewhere@4,12# in
terms of continuum equations. Finally, we look at the effect
of random driving forces in our model and compare the re-
sults with those from other models.

MODEL

Since the effect of grain reorganization driven by slow tilt
is easiest to visualize from a continuum viewpoint our model
incorporates grains which form part of a continuum so that
the column heights,hi , are real variableshiPR; the column
identities, 1< i<L, are discrete as usual. We consider granu-
lar driving forces,f i , that include, in addition to a term that
drives the normal surface flow, a contribution that is propor-
tional to the deviation of the column height from an ‘‘ideal’’
height; this ideal height is a simple representation of a natu-
ral random packing of the grains in a column, so that col-
umns which are taller~shorter! than ideal would be relatively
loosely ~closely! packed, and driven to consolidate~dilate!
when the sandpile is perturbed externally. Our motivation for
this choice comes from previous work@13# where we have
shown that a shaken sandpile tends to consolidate or dilate,
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depending on its initial state; we generalize this here to in-
clude driving in the form of rotation and deposition. Thus

f i5k1~hi2 iaS0!1k2~hi2hi212aS0!, iÞ1, ~1!

wherehi are the column heights,k1 andk2 are constants,a is
the lattice spacing, andiaS0 is the ideal height of columni .
We note that~a! the first term, which depends on the abso-
lute height of the sandpile, corresponds to a force that drives
column compression or expansion towards the ideal height.
Since we normally deal with columns which are more dilated
than their normal height, we will henceforth talk principally
about column compression;~b! the second term is the usual
term driving surface flow, which depends on local slope, or
height differences; the offset ofS0 is the ideal slope from
which differences are measured.

Equation ~1! suggests the redefinition of heights
azi[hi2 iaS0, which leads to the dimensionless representa-
tion:

f i5~k1 /k2!zi1~zi2zi21!, iÞ1. ~2!

When columni is subject to a force greater than or equal
to the threshold forcef th , the height changes are as follows:

zi→zi2dz,
~3!

zi21→zi211dz8, iÞ1.

The column-height changes that correspond to a typical re-
laxation event are illustrated in Fig. 1. Thus, the heightdz
removed from columni , due to a local driving force that
exceeds the threshold force, leads to a flow of grains, with
total height incrementdz8, from columni onto columni21,
and a consolidation of the grains in columni which reduces
the column height by (dz2dz8). This reorganization clearly
expresses the action of two relaxation mechanisms. The de-
composition of the relaxation, that is, a particular choice for
dz anddz8, is discussed below in analogy with a previously
established model for earthquake behavior.

The coupling between the column heights expressed in~3!
may lead to the propagation of instabilities along the sand-

pile and hence to avalanches. Avalanches have also been
discussed widely in the context of earthquakes@14#, and one
aim of this paper is to draw analogies between sandpiles and
earthquakes. We choose a discrete model of earthquakes, put
forward by Nakanishi@15#, to highlight those features which
are common to our sandpile model and earthquake models
and we follow the notation of@15# wherever possible.

We choose the force relaxation function,f i2 f i8 to be@15#

f i2 f i85 f i2 f thS ~22d f !2/a

~ f i2 f th!/ f th1~22d f !/a
21D , ~4!

where f i and f i8 are the granular driving forces on columni
before and after a relaxation event. This function has a mini-
mum value~5d f f th! when f i5 f th , and increases monotoni-
cally with increasingf i ; this form models the stick-slip fric-
tion associated with sandpiles and earthquakes. For driving
forces,f i , below the threshold forcef th nothing happens but,
for forces that exceed this threshold, the size of relaxation
events increases in proportion to the excess force. Accord-
ingly, the minimum value of the function~4! is known as the
minimum event size and its initial rate of increase,a5d( f i
2 f i8)/d( f i2 f th) at f i5 f th , is called the amplification@15#.
In our sandpile model amplification refers to the phenom-
enon whereby grains collide with each other during an ava-
lanche so that their inertial motion contributes to the buildup
of the avalanche; thusa is an expression of granular inertia
@6#.

Using Eq. ~2! we can rewrite the map in terms of the
driving forces as~see Appendix A!:

f i2 f i852dz/D,
~5!

dz85dz/~11k1 /k2!,

f i218 2 f i5 f i118 2 f i1152D~ f i82 f i !/2, iÞ1 or L.
~6!

In both sandpile and earthquake models the amount of redis-
tributed force at a relaxation event is governed by the param-
eterD52(11k1/k2)/[11(11k1/k2)

2]; since the undistrib-
uted force is ‘‘dissipated’’~12D! becomes the dissipation
coefficient ~Appendix A!. Note, however, that in our sand-
pile model, this dissipation is linked to nonconservation of
the sandpilevolumearising from the compression of col-
umns towards their ideal heights and is therefore linked to
the phenomenon of internal granular reorganization.

We use boundary conditions appropriate to a sandpile in a
rotating cylinder; open ati50 and closed ati5L. Equations
~4! and ~6! give a prescription for the evolution of forces,
$ f i% i51,L, so that any forces in excess of the threshold
force are relaxed according to~6! and redistributed according
to ~4!. Alternatively this sequence of events can be followed
in terms of the redistribution of column heights according to
~3! and~5!. The prescription,~4!, ~6!, classifies the model as
a local and unlimited sandpile in the framework given by
Kadanoffet al. @16#.

We will show below that for allDÞ1, the largest part of
the volume change during relaxation occurs as a result of
consolidation; the quantity of interest is thus the difference
between the old and new configurations, rather than the mass

FIG. 1. A schematic diagram showing the column height
changes that describe a single relaxation event in the CML sandpile
model.
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exiting the sandpile@5#. A measure of this change is the
quantity lnM5ln Si(fi2fi8)5ln@(i(k1 /k2)(zi2zi8)1zL2zL8#,
wherezi8 is the height of columni immediately after a relax-
ation event; this quantity is the analogue of the event mag-
nitude in earthquake models@14,15#. We will discuss the
variation of this quantity as a function of model parameters
in the next section; in particular, we will compare the re-
sponse of our rotated sandpile model to that of the same
model subjected to random deposition.

RESULTS

Rotated sandpile

For a sandpile in a rotating cylinder, the tilting of the
sandpile results in changes of slope over the complete sur-
face in a continuous manner~in contrast to the case of ran-
dom deposition where the slopes change locally and discon-
tinuously at a deposition event@5#!. Our coupled map lattice
~CML! model is driven continuously; from a configuration in
which all forcesf i are less than the threshold force, elements
of height,z i

1, are added onto each column with

zi
15 i ~ f th2 f j !/~11 jk1 /k2!, i51,L, ~7!

where f j5max(f i). This transformation describes the effect
of rotating the base of the sandpile with a constant angular
speed until a threshold force arises at columnj . ~We note
that this is distinct from the external driving force in the
earthquake model@15#, which would correspond, in a sand-
pile model, to the uniform addition of height elements across
the surface.! The response to the tilting is, as described
above, a flow of particles down the slope as well as reorgani-
sation of particles within the sandpile.

The predominant effect of our model is to cause volume
changes by consolidation, rather than to generate surface
flow. Using the relation between force and column height,
~2!, and integrating from the left, we can construct the shape
of a critical sandpile which has driving forces equal to the
threshold force on all of its columns; in terms of the variable
z[(11A12D2)/D, the critical sandpile has column heights
z i
c given by

zi
c5 f th$12z21 exp@~12z!~ i21!a#%/~z21!, D,1.

~8!

This shows that, for allD,1, the critical sandpile starts, at
i51, with a slope greater thanS0 and subsequently the slope
decreases until it becomes steady, atS0 for i@1 where the
constant deviation of the column heights from their ideal
values is given byf thD/(12D1A12D2) ~Fig. 2!. We have
verified, by simulation, that the corresponding state is an
attractor. We emphasize that this sandpile shape is quite dis-
tinct from that generated by standard lattice sandpiles, and is
close to theS-shaped sandpile observed in rotating cylinder
experiments@3#.

This description of the critical sandpile leads to the asser-
tion that our model is one in which reorganization of grains
predominates over surface flow. From~1! it is clear that any
value of steady slope which differs fromS0 would lead to a
linear growth in the first term and is therefore unstable. Thus
stability enforces solutions where the average slope, for

i@1, isS0. For a truly critical pile the second term in~1! is
identically zero fori@1 so that, except in the smalli region,
the threshold force that drives relaxation arises solely from
the compressive component. The same reasoning is true on
average for model sandpiles near criticality and makes for
threshold forces which are predominantly compressive~al-
though surface flow events arising from local slope inhomo-
geneities also exist, particularly near the bottom of the sand-
pile!. This predominance of the compressive term then leads
to column height changes that are typically; f thDd f and, in
the parameter range under consideration, are small compared
to the ‘‘column grain size’’S0a ~the average step size in a
lattice slope with gradientS0 and column widtha!. In other
words, typical events are likely to be due to internal rear-
rangements generating volume changes that are small frac-
tions of ‘‘grain sizes’’, and they can be visualized as the
slow rearrangement of grains within their clusters; this is in
contrast to the surface flow events in standard lattice models
@1# where entire grains flow down the surface independently
of their clusters@2#. This preponderance of reorganizational
events over large surface avalanches is consistent with the
dynamics of sand in a slowly rotating cylinder@3,4#.

The steady state response of the driven sandpile may be
represented as a sequence of events each of which corre-
sponds to a set of column height changes. Each avalanche is
considered to be instantaneous so that the temporal separa-
tion of consecutive events is defined by the driving force~7!.
We choose a timescale in which the first column has unit
growth rate and begin each simulation att50 with a sand-
pile containing columns which have small and random de-
viations from their natural heights; also we seta5S051 to
fix the arbitrary horizontal and vertical length scales and we
fix f th51 to define units of ‘‘force.’’ The dynamics of events
do not depend explicitly on these choices.

In Fig. 3 we plot the distribution function per unit time
and lengthR@ln(M )#, against ln(M ) for sandpiles with size

FIG. 2. The shape of a critical CML model sandpile withL532
andD50.95. The line indicates the ‘‘ideal’’ column heights.
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L5512 and parameter valuesd f50.01, a52,3,4, and
D50.6,0.85,0.95. We note in particular the small value of
d f , and mention that our results are qualitatively unaffected
by choosingd f in the range0.001,d f,0.1; given its in-
terpretation in terms of the smallest event size, this reflects
our choice of the quasistatic regime, where small cooperative
internal rearrangements predominate over large single-
particle motions. The distribution functions in Fig. 3 indicate
a scaling behavior in the region of small magnitude events
and, for larger magnitudes, frequencies that are larger than
would be expected from extension of the same power law.
The phase diagram in theD2a plane indicates qualitatively
distinct behavior for low-inertia, strongly consolidating~low
a andD! systems where the magnitude distribution function
has a single peak, and high-inertia, weakly consolidating
~higha andD! systems for which the magnitude distribution
has a clearly distinct second peak.

These results are in accord with the Nakanishi earthquake
automaton@15#; however, their interpretation in the context
of our sandpile model is quite novel and distinct~see below!.
In Fig. 4 we show the relative column heights,zi , plotted

against the distance of the column from the axis of rotation.
The solid line denotes the configuration before, and the dot-
ted line that after, a large avalanche; we note that a section of
the sandpile has ‘‘slipped’’ quite considerably during the
event.

The rotation of the sandpile causes a uniform increase of
the local slopes and a preferential increase of absolute col-
umn heights in the upper region of the sandpile. The sandpile
is thus driven towards its critical shape where relaxation
events are triggered locally. These events will be localized
~‘‘small’’ ! or cooperative~‘‘large’’ ! depending ona andD.
For strongly consolidating systems with small amplification
a, a great deal of excess volume is lost via consolidation, and
the effect of surface granular flow is small; in these circum-
stances, the propagation and buildup of an instability is un-
likely so that events are, in general, localized, uncorrelated
and hence small. This leads to the appearance of the single
peak in the distributions in the upper left of Fig. 3. Alterna-
tively, for weakly consolidating systems with large amplifi-
cation, the surface flow is large and large amounts of excess
volume are not lost via consolidation; this situation favors

FIG. 3. A logarithmic plot of the distribution function of event sizes,R~Log(M )!, for 107 consecutive events in a CML model sandpile
with L5512 and parameter valuesd f50.01,a52,3,4 andD50.6,0.85,0.95.~Logarithms base 10.!
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the cooperative transmission and enhancement of events,
leading to the appearance of large avalanches which are
manifested by the appearance of a second peak in the distri-
butions at the lower right of Fig. 3. In principle, these large
avalanches would be halted by strong configurational inho-
mogeneities such as a ‘‘dip’’ on the surface, where the local
driving force ~1! is far below threshold; our simulations
show that such configurations are rare in sandpiles that are
close to criticality, and this leads to the appearance of the
special scale for large avalanches.

Figure 5 shows a time series of avalanche locations that
occur for a model sandpile in the two-peak region. The large
events are almost periodic and each is preceded by many
small precursor events; this is in accord with previous work
@5,17# on sandpiles as well as earthquakes@15#. In addition it
is apparent that large avalanches tend to occur repeatedly at
or around the same regions of the sandpile, whose location
changes only very slowly compared to the interval between
the large avalanches; these correlations in both the positions
and the times of large events are often referred to as
‘‘memory’’ @2–4#.

We have previously given a qualitative explanation for
memory in sandpiles@17# which, in the context of our
present model, becomes more quantitative. Thus because the
relaxation function~4! is a smooth function of the excess
force f i2 f th ~which depends on the configuration of the
pile!, the propagation of a large event across the sandpile
causes a smoothing ofsmall configurational inhomogene-
ities. In turn this reduces the probability that a new event will
be initiated in the same region of the sandpile, until the
whole region is again driven towards its critical configura-
tion. In contrast large configurational inhomogeneities, such
as large dips or surface voids, which are able to halt the
progress of large avalanches, remain as significant features
~often slightly weakened and displaced! in the sandpile con-
figuration following a large event; these can then have an

effect on the spatial extent of subsequent events. Thus, for
those regions of phase space~a andD large! where granular
inertia plays a large role in amplifying avalanches, and where
consolidation is not effective, our model shows the existence
of quasiperiodic large events which repeatedly disrupt the
same regions of the system, thus manifesting configurational
memory. On the other hand, when the inertial effect is weak
and when the void space is honed down via consolidation~a
andD small!, the predominant effect is that of small uncor-
related events which do not leave a persistent mark on the
sandpile configuration so that no memory effects are ob-
served. For moderate values ofa andD, both small and large
events will be seen~Fig. 5!; note also that for the specific
case of the rotated sandpile, these large events occur pre-
dominantly towards the top of the pile, where structural re-
organization brought on by rotation is most effective.

The shape of the critical sandpile, which we discussed
earlier, leads to another interesting feature, namely, an intrin-
sic size dependence. As mentioned before, the shape is char-
acterized by~a! the length of the decreasing slope region and
~b! the constant deviation of column heights from their ideal
values in the steady slope region which follows~Fig. 2!. The
lengthL of the increasing slope region at smalli has a finite
extent given by

L;~11A12D2!/~12D1A12D2! ~9!

and this can be made an arbitrary fraction of the sandpile by
an appropriate choice of system size. An intrinsic size depen-
dence resulting from the physics of competition between the
surface and bulk relaxation processes is of interest because it
has been observed in sandpile experiments@9,18#; however,
we will defer the full effects of this to future work, and for
the present limit our results to sandpiles whose lengthL@L.

FIG. 4. A plot of column heights, relative to their critical
heights, for a CML model sandpile withL5128 and parameter
valuesd f50.01,a53, andD50.85. The full ~dotted! line shows
the configuration before~after! a large event.

FIG. 5. A plot showing the locations of relaxation events
~changes in column heights!, that occur during an interval of length
1.5 which begins att5104, for a CML model sandpile withL5256
and parameter valuesd f50.01,a53, andD50.85.

5708 53G. C. BARKER AND ANITA MEHTA



As mentioned in the introductory section, we would ex-
pect few events to result in mass exiting the pile, as our
model is one in which internal volume reorganizations domi-
nate surface flow. Thus, mass will exit a pile either via the
propagation of large events~which occur fora andD large!
or if surface flow is significant~typically events initiated in

the increasing slope regionL!. Figure 6 shows the logarithm
of the exit mass size distribution function,f „ln(mx)…, for a
sandpile of sizeL5128 with d f50.01,a54, andD50.95.
While the absolute magnitudes of the event sizes are sup-
pressed in comparison to Fig. 3, we see the two-peak behav-
ior consistent with the corresponding event size distribution
function. The large second peak indicates that a significant
proportion of the exit mass is due to large events referred to
above; also, we have checked that this is the only part of the
distribution that survives for larger system sizes, in agree-
ment with the length dependence above. Finally, we mention
that the two-peak behavior obtained for the exit mass distri-
bution is in accord with behavior we have observed previ-
ously in a cellular automaton model of a reorganizing sand-
pile @5#, thus confirming our conclusion@3# that the presence
of reorganization as a ‘‘second’’ mechanism of relaxation
causes the breakdown of scale invariance observed in sim-
pler models@1#.

Sandpile driven by random deposition

The perturbation more usually encountered in sandpiles is
random deposition. We may replace the organized addition
~7! with the random sequential addition of height elements,
z i

15zg , onto columnsiP1,L. When the added elements are
small compared to the minimum event size, so that
zg! f thd f , random addition is statistically equivalent to uni-
form addition, which was the case considered in the context
of earthquakes@15#. The distribution of event sizes, shown
by the full lines~corresponding tozg50.01! in Fig. 7, is then
not markedly distinct from that shown in Fig. 3 for the rota-
tional driving force and both are similar to the distributions
presented in@15#. In most of the parameter ranges we con-

FIG. 6. A logarithmic plot of the distribution function of exit
mass sizes,f „Log(mx)…, for a sandpile of sizeL5128 with d f
50.01,a54 andD50.95 for 107 consecutive events. The exit mass
mx is the sum of height increments,dz8, that topple from the first
column during an event.~Logarithms base 10.!

FIG. 7. A logarithmic plot of the distribution
function of event sizes,R„Log(M )… ~full lines!,
for 107 consecutive events in a randomly driven
CML model sandpile withL5512 and parameter
valuesd f50.01,a52,3,4,D50.6,0.85,0.95, and
zg50.01. Faint lines show the corresponding dis-
tribution functions forzg50.1 and 1.0.~Loga-
rithms base 10.!
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sider, the event size distribution functions are size indepen-
dent, indicating that intrinsic properties of the sandpile are
responsible for their dominant features, which include a sec-
ond peak representing a preferred scale for large avalanches.
Figure 8 shows the corresponding time series of event
locations—note that random driving leads to events which
are relatively evenly spread over the sandpile and to repeated
large events, each preceded by their precursor small events.
Note also that after the passage of a large event and/or ca-
tastrophe over a region, there is an interval before events are
generated in response to the deposition; this underlines our
picture referred to earlier, whereby large events leave their
signatures on the landscape, in the form, for instance of dips.
These configurational sinks are associated in our model with
forces well below threshold, so that grains deposited on them
will, for a while, not cause any relaxation events until the
appropriate thresholds are reached.

If we now increase the size of the incoming height ele-
ments so that they are larger than the minimum event size
but are still small compared to the column grain size~i.e.,
f thd f,zg,aS0!, there are two direct consequences. First,
the driving force leads to local column height fluctuations
;zg , so that the surface is no longer smooth; these height
fluctuations play the role of additional random barriers which
impede the growth of avalanches, thus reducing the probabil-
ity for large, extended events. Second, given that the added
height elements are much larger than the minimum event
size, their ability to generate small events is also reduced; the
number of small events therefore also decreases. The size
distributions for this case consequently have a domed shape
with apparently two scaling regions. This case is illustrated
by one of the fainter lines in Fig. 7~corresponding to

zg50.1!. Note that for largea andD, the large events, being
more persistent, are able to overcome the configurational
barriers ~;zg fluctuations in column heights! referred to
above and we still see a second peak indicating the continued
presence of a preferred avalanche size.

As the perturbation strength becomes even stronger,
zg.aS0 so that column height fluctuations are comparable
with the column grain size, there are frequent dips on the
landscape, which can act as configurational traps for large
events. All correlations between events begin to be destroyed
and relaxation takes place locally giving a narrow range of
event sizes determined only by the size of the deposited
grains. This situation is illustrated by the second faint line in
Fig. 7, which corresponds tozg51.0.

Finally, and for completeness, we link up with the famil-
iar scaling behavior of lattice sandpiles@1#; as mentioned
before, scale invariance is recovered when the driving force
is proportional to slope differences alone and no longer con-
tains the second mechanism of compression and/or reorgani-
zation, so thatk150 andD51. In order, more specifically, to
match up with the local and limitednf52 model of
Kadanoff et al. @16#, we start with the randomly driven
model and~a! setk150 andD51 in Eq. ~1!, ~b! setzg51,
~c! choose a relaxation functionf i2 f i85 f thd f ; this is a con-
stant independent off i for f i. f th , and in particular contains
no amplification; and~d! setd f54.0, so that each threshold
force causes a minimum of two ‘‘grains’’ to fall onto the
next column at every event, so thatnf52.

This special case of our CML model is then identical with
the scale-invariant model of Kadanoffet al. @16#. Figure 9
shows the smooth~scaling! exit mass size distribution in the
limit of no dissipation and the corresponding spatial distri-
bution of scaling events is shown in Fig. 10. Uncorrelated
events are observed over many sizes indicating a return to
scale invariance.

FIG. 8. A plot showing the locations of relaxation events
~changes in column heights!, that occur during an interval of length
1.5 which begins att5103, for a randomly driven CML model
sandpile with L5256 and parameter valuesd f50.01, a53,
D50.85, andzg50.01.

FIG. 9. A logarithmic plot of the distribution function of exit
mass sizes,f „Log(mx)…, for 10

7 consecutive events in a randomly
driven CML model sandpile withL5512 and parameter values
d f54, D51, andzg51. ~Logarithms base 10.!
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DISCUSSION

Before discussing our main results, we review the moti-
vation behind the work presented in this paper. The earliest
cellular automaton models of sandpiles@1,16#, which were
put forward to illustrate self-organized criticality~SOC!, re-
lied on simple pictures of grains flowing down sloping sur-
faces. While they were entirely adequate in their aim, and act
as paradigms of SOC, their predictions were at variance with
experiments on real sandpiles@8,9#; this anomaly stimulated
a great deal of work on the dynamics of granular systems
@2,3#. The importance of a coupling between freely flowing
surface grains and relatively immobile clusters in the bulk
material soon became apparent; this idea was put forward in
a model @10# encapsulating the competition between
independent-particle and collective dynamics in a sandpile
subjected to external perturbation, where mobile grains and
clusters were respectively responsible for the two dynamical
modes. A body of work proceeded to examine the relative
effects of the two relaxation mechanisms on the material
properties of the system@4,5,12,13#; this yielded results in
agreement with experiment, thus validating the idea of grain-
cluster coupling on which they were based.

Here we have provided a decorated lattice model to rep-
resent grain and cluster couplings in a sandpile. The coupled
map lattice model has two important parameters;a ~amplifi-
cation! which determines the strength of surface flow or
grain inertia effects, andD, which is related to internal reor-
ganization such that 12D represents dissipation.

Our main result is that for largea andD, there is a pre-
ferred size for large avalanches, which is manifested as a
second peak in the distribution of event sizes~Fig. 3!. In
terms of a simple picture this is because, for largea andD,
grains have enough inertia to speed past available traps, and

there is consequently a large amount of unrelaxed excess
volume on the surface. This excess volume can be visual-
ized, for instance, as a precariously balanced cluster~Fig.
11!; the oncoming~dark! grain will knock off the shaded
grains when it hits them, unleashing a large avalanche. For
smalla andD we see, by contrast, mainly small events lead-
ing to a single peak in Fig. 3; we visualize this by imagining
slowly moving grains~low inertia! drifting down the surface,
locking into voids and dissipating excess volume efficiently.
This qualitative picture also indicates that initiated ava-
lanches will be terminated relatively rapidly, leading to many
small events.

The large avalanches mentioned above are quasiperiodic
and tend to occur repeatedly around the same regions of the
surface ~Fig. 5!, providing an important representation of
configurational memory. In terms of the simple picture above
this is because regions of the sandpile which look like Fig.
11 are wiped clean by the effect of the large avalanche, so
that further deposition or rotation has no effect for a while.
However, the effect of largea andD mean that once again,
unrelaxed volume will be created around the same region
after high-inertia grains flow down the surface; this will be
the case after a number of small events have occurred~Fig.
5!. These spatial and temporal correlations result in a quasi-
periodic repetition of large avalanches around the same re-
gions of the sandpile, resulting in configurational memory
@17#.

We have examined the response of the CML model to
random deposition, with particular reference to the sizezg of
the deposited grains. Three distinct regimes are observed:

~i! Whenzg is of the order of a ‘‘minimum event,’’ i.e., it
is comparable to the smallest fractional change in volume
caused by a reorganizing grain, the response is similar to that
of rotation ~Fig. 7!.

~ii ! Whenzg is intermediate between the minimum event
size and the typical column grain size of the sandpile, reor-
ganizations of grains corresponding to the smallest volume
changes are ruled out; on the other hand, there are moder-
ately sized barriers (;zg) across the landscape impeding the
progress of large events. The appropriate size distribution in
Fig. 7 has, consequently, a shape which lacks the extreme
small and large events of the previous case.

~ii ! When zg is larger than the column grain size of the
sandpile large configurational barriers are generated by depo-
sition and these act as traps for large events. Correlations
between events are destroyed, leading to a narrow distribu-
tion of event sizes corresponding to local responses to the
deposition.

FIG. 10. A plot showing the locations of relaxation events
~changes in column heights!, that occur during an interval of length
0.25 which begins att5103, for a randomly driven CML model
sandpile with L5256 and parameter valuesd f54, D51, and
zg51.

FIG. 11. A schematic diagram illustrating the mechanism for
large-avalanche formation. WhenD is large, there is a great deal of
undissipated volume in the cluster, resulting in the upper~shaded!
grains being unstable to small perturbations. Whena is large, the
black grain hitting the cluster has large inertia so that a large ava-
lanche results when it dislodges the shaded grains.
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The central analogy between our work and work on
spring-block models of earthquakes@14,15# is that small
events build up configurational stress (in the sandpile con-
text this is via landscapes which look like Fig. 11) which
then leads, quasiperiodically, to the large events able to re-
lease the stress. While we have drawn this analogy in previ-
ous work@4,17#, the work presented here is a quantification
of this analogy with an explicit model. Thus, while our
model is necessarily similar to earthquake models in some
respects, such as the choice ofD governing the force redis-
tribution, our interpretation in terms of fluctuating column
heights~1!, ~3! is actually quite distinct.

The relaxation process~6! is symmetric and is, in that
sense, similar to that presented in@15#. However the CML
sandpile model has a preferred direction of flow~down the
slope! created by the boundary conditions so that, on aver-
age,zi.zi21 and predominantly this leads to a situation for
which f i21. f i11. Thus, even though the relaxation process
in ~6! is symmetric, the propagation of relaxation events is
biased in the direction down the slope. The effect of this
asymmetry has far reaching consequences@19#, one of which
is that it is possible to solve a boundary value problem,
which cannot be solved in the spring-block model@15#, lead-
ing to the explicit shape of the critical pile presented in~8!.
Another crucially important consequence of this difference is
that in the sandpile model, most of the flow comes from the
compression term, whereas this is not the case for the earth-
quake model@15#. This feature, with a change of driving
force, enables us to model the experimentally important situ-
ation of a sandpile in a slowly rotating cylinder.

We note that the limitD51 is a special case; this corre-
sponds to the situation with no reorganization, wherek150,
and describes a sandpile which is constantly at an ideal den-
sity. The granular driving force no longer has a compressive
component and, as for standard sandpile models@1#, depends
only on height differences. The approach to this limit is also
of interest, involving a discontinuous transition to a regime
in which the critical sandpile has a constant slope~S01f th!.
The neighborhood of the limitD;1, is a region of very weak
dissipation, and, as has been seen in other deterministic non-
linear dynamical systems@20#, could well be characterized
by complex periodic motion at large times; this has recently
been argued to be especially relevant to models with periodic
boundaries@21#. We have investigated this issue and find
that, for the regions of parameter space explored here, we do
not see periodic features in sequences containing up to
53107 events.

To conclude, we have designed a coupled-map lattice
model of a sandpile which includes surface flow and internal

reorganization as the two principal mechanisms of relax-
ation, focusing on the situation where reorganization domi-
nates flow. We have, by an appropriate choice of driving
forces, examined its response to rotation, as well as to depo-
sition. In the former case, we have presented the event size
distribution corresponding to different regions of parameter
space and explained our results in terms of the inertia of the
flowing grains and the reorganization of clusters. In the latter
case, we have analyzed the event size distribution function in
terms of the size of the deposited grains. We hope that these
results will stimulate new investigations, both experimental
and theoretical, which include an explicit examination of the
couplings between internal and surface degrees of freedom
for flowing sandpiles.

APPENDIX: REEXPRESSION OF THE COUPLED MAP

For the relaxation event summarized in Fig. 1, with
iÞ1,L, substitution of~3! into ~2! gives

f i218 5 f i211~11k1 /k2!dz8,

f i85 f i2~11k1 /k2!dz2dz8,

and

f i118 5 f i111dz. ~A1!

For a symmetric process, where relaxed force is distributed
equally in both directions,

f i218 2 f i215 f i118 2 f i11

so that

dz85dz/~11k1 /k2!

and

f i2 f i85~11k1 /k2!dz1dz852dz/D, ~A2!

where

D52~11k1 /k2!/@11~11k1 /k2!
2#.

The driving force ‘‘lost’’ due to a relaxation event in which
f i→ f i8 is

~ f i2 f i8!2~ f i118 2 f i11!2~ f i218 2 f i21!52dz/D22dz

5~12D!~ f i2 f i8!

and, therefore,~12D! is a dissipation coefficient.
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